2,007 research outputs found

    Entanglement and Superdense Coding with Linear Optics

    Full text link
    We discuss a scheme for a full superdense coding of entangled photon states employing only linear-optics elements. By using the mixed basis consisting of four states that are unambiguously distinguishable by a standard and polarizing beam splitters we can deterministically transfer four messages by manipulating just one of the two entangled photons. The sender achieves the determinism of the transfer either by giving up the control over 50% of sent messages (although known to her) or by discarding 33% of incoming photons.Comment: 8 pages, 1 figur

    Nonequilibrium Green's functions and atom-surface dynamics: Simple views from a simple model system

    Full text link
    We employ Non-equilibrium Green's functions (NEGF) to describe the real-time dynamics of an adsorbate-surface model system exposed to ultrafast laser pulses. For a finite number of electronic orbitals, the system is solved exactly and within different levels of approximation. Specifically i) the full exact quantum mechanical solution for electron and nuclear degrees of freedom is used to benchmark ii) the Ehrenfest approximation (EA) for the nuclei, with the electron dynamics still treated exactly. Then, using the EA, electronic correlations are treated with NEGF within iii) 2nd Born and with iv) a recently introduced hybrid scheme, which mixes 2nd Born self-energies with non-perturbative, local exchange-correlation potentials of Density Functional Theory (DFT). Finally, the effect of a semi-infinite substrate is considered: we observe that a macroscopic number of de-excitation channels can hinder desorption. While very preliminary in character and based on a simple and rather specific model system, our results clearly illustrate the large potential of NEGF to investigate atomic desorption, and more generally, the non equilibrium dynamics of material surfaces subject to ultrafast laser fields.Comment: 10 pages, 5 figure

    Casimir attractive-repulsive transition in MEMS

    Full text link
    Unwanted stiction in micro- and nanomechanical (NEMS/MEMS) systems due to dispersion (van der Waals, or Casimir) forces is a significant hurdle in the fabrication of systems with moving parts on these length scales. Introducing a suitably dielectric liquid in the interspace between bodies has previously been demonstrated to render dispersion forces repulsive, or even to switch sign as a function of separation. Making use of recently available permittivity data calculated by us we show that such a remarkable non-monotonic Casimir force, changing from attractive to repulsive as separation increases, can in fact be observed in systems where constituent materials are in standard NEMS/MEMS use requiring no special or exotic materials. No such nonmonotonic behaviour has been measured to date. We calculate the force between a silica sphere and a flat surface of either zinc oxide or hafnia, two materials which are among the most prominent for practical microelectrical and microoptical devices. Our results explicate the need for highly accurate permittivity functions of the materials involved for frequencies from optical to far-infrared frequencies. A careful analysis of the Casimir interaction is presented, and we show how the change in the sign of the interaction can be understood as a result of multiple crossings of the dielectric functions of the three media involved in a given set-up.Comment: 6 pages, 4 figure

    Interface damage modeled by spring boundary conditions for in-plane elastic waves

    Get PDF
    In-plane elastic wave propagation in the presence of a damaged interface is investigated. The damage is modeled as a distribution of small cracks and this is transformed into a spring boundary condition. First the scattering by a single interface crack is determined explicitly in the low frequency limit for the case of a plane wave normally incident to the interface. The transmission at an interface with a random distribution of small cracks is then determined and is compared to periodically distributed cracks. The cracked interface is then described by a distributed spring boundary condition. As an illustration the dispersion relation of the first modes in a thick plate with a damaged interface in the middle is given

    Comment on "Thermal Effects on the Casimir Force in the 0.1-5 micrometer Range"

    Full text link
    In a recent paper (M. Bostrom and Bo E. Sernelius, Phys. Rev. Lett. 84, 4757 (2000)) the combined effect of finite conductivity and finite temperature on the Casimir force is analyzed, and significant deviations from other theoretical results and a recent experiment are obtained. In this Comment, I show that the extrapolation to zero frequency is incorrect because the authors have neglected that the wavenumber and frequency of the electromagentic mode must simultaneously appraoch zeroComment: Final version (two previous versions, first was partly incorrect) Rejected by PRL

    Compositional nanodomain formation in hybrid formate perovskites

    Full text link
    We report the synthesis and structural characterisation of three mixed-metal formate perovskite families [C(NH2_2)3_3]M1x_{1-x}Cux_x(HCOO)3_3 (M = Mn, Zn, Mg). Using a combination of infrared spectroscopy, non-negative matrix factorization, and reverse Monte Carlo refinement, we show that the Mn- and Zn-containing compounds support compositional nanodomains resembling the polar nanoregions of conventional relaxor ferroelectrics. The M = Mg family exhibits a miscibility gap that we suggest reflects the limiting behaviour of nanodomain formation.Comment: 4 pages, 3 figure

    Non-Perturbative Theory of Dispersion Interactions

    Get PDF
    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here we present a full non-perturbative theory. In addition we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.Comment: 9 pages, no figure

    VACCINATION AGAINST SWINE FLU CAUSED NARCOLEPSY IN SEVERAL EUROPEAN COUNTRIES

    Get PDF
    Publisher Copyright: © 2020 Boström I., Lindberger O., Partinen M., Landtblom A.M. All Rights Reserved.Narcolepsy is a rare sleeping disorder that gives sleep onset rapid eye movement periods and excessive daytime sleepiness. It is divided into two subgroups, narcolepsy type 1 where there also is orexin deficiency and cataplexy and narcolepsy type 2 that lack these features. Narcolepsy type 1 is assumed to be an autoimmune disease with destruction of orexin-producing cells. The pathology behind is unclear. There is a strong association to a class II HLA allele, HLADQB1*06:02 and the H1N1-virus and streptococcal infections has also been associated with narcolepsy. The severity of narcolepsy differs between patients from those who can manage their disease without medication to those who has a severe impact on their everyday life. There is a diagnostic delay between the onset of symptoms and time for diagnosis that in some cases can be more than a decade. The global mean prevalence is 30 per 100 000 inhabitants. The incidence in children in northern Europe has risen since 2010. An early study of the 2009 H1N1 influenza A pandemic indicated a high mortality and prompted efforts to rapidly come up with a vaccine. One of these was Pandemrix that was the most widely used in Europe and 61 % of the inhabitants in Sweden was vaccinated. Studies have shown an increased incidence of narcolepsy type 1 in European countries that had used Pandemrix, but no increased risk was seen in countries that had used other vaccines than Pandemrix.Peer reviewe

    Controlling the magnetic state of the proximate quantum spin liquid α-RuCl<sub>3</sub> with an optical cavity

    Get PDF
    Harnessing the enhanced light-matter coupling and quantum vacuum fluctuations resulting from mode volume compression in optical cavities is a promising route towards functionalizing quantum materials and realizing exotic states of matter. Here, we extend cavity quantum electrodynamical materials engineering to correlated magnetic systems, by demonstrating that a Fabry-Pérot cavity can be used to control the magnetic state of the proximate quantum spin liquid α-RuCl3. Depending on specific cavity properties such as the mode frequency, photon occupation, and strength of the light-matter coupling, any of the magnetic phases supported by the extended Kitaev model can be stabilized. In particular, in the THz regime, we show that the cavity vacuum fluctuations alone are sufficient to bring α-RuCl3 from a zigzag antiferromagnetic to a ferromagnetic state. By external pumping of the cavity in the few photon limit, it is further possible to push the system into the antiferromagnetic Kitaev quantum spin liquid state
    corecore